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Theoretical formulas are described for calculating the pore diameters in undeformed 
woven strips and in metals based on them. 

Porous metals formed from woven strips are mainly used as filters. It has been shown 
by experiment that such porous metals can also be used to accelerate heat transfer 
in compact heat exchangers. 

It is necessary to know a certain internal scale for the medium in order to calculate 
the flow and heat transfer in the pores. While a granular layer or a bed of spheres can be 
characterized by the mean hydraulic diameter, which is proportional to the ratio of the 
porosity to the specific surface [2], the scale most widely used for a porous metal is the 
mean pore diameter. The latter is determined from the pressure difference on blowing a gas 
through the wetted specimen [3]. 

Measurements have been reported [3, 4] on the dependence of pore diameter on porosity 
for metals of various types. While experimental studies present valuable factual evidence, 
they have certain disadvantages, since in particular they do not enable one to establish the 
effects of the geometrical characteristics of the initial strip on the metal pore diameter, 
so one cannot forecast the value, while another important point in our view is that one can- 
not establish how completely this quantity characterizes the geometrical structure of the 
pore space. 

Here we present an analytical approach to determining the pore diameter, while enables 
one to eliminate the above disadvantages in experimental studies. 

The initial point in determining the metal pore diameter is a geometrical model for an 
undeformed strip, where the pore diameter can be calculated theoretically. The latter is of 
independent interest in connection with separating gas--liquid mixtures under conditions of 
low gravity [5]. 

In turn, the pore diameter calculation is based on examining the variation in hydraulic 
diameter over the thickness and finding the value least in a certain sense. It has been 
shown [6] that it is correct to identify the pore diameter with the hydraulic diameter for a 
fibrous material. 

Here we consider dense strips (without cells transmitting light) made by weaving. The 
strips are characterized by the following initial parameters: warp diameter do, weft diam- 
eter du, number of wires in warp n o , and number of wefts n u per unit length. The type of 
weaving is defined by the quantity ~: ~=0 linen, 0.5 semiserge, and 1 serge. Pictures of 
the different types of weaving can be found in [7]. The dimensional parameters are accom- 
panied by dimensionless ones: 

dO ~o~ = d~o~/d~, ~ (60 + 6u) vo, ~U(O) ~ ~ ( 0 )  U~ ~ 

where d~ is the standard diameter of a weft wire, which is taken as the characteristic scale. 
The difference of d~ from d u is explained below. 

We now give the expression for the strip porosity. The ratio of the volume of material 
to the area of a rectangle cut from it is readily shown to be equal to the sum (nudge + 
nod~)~/4 , which on dividing by d~ to give a dimensional quantity gives Z s = (~u6~0 + ~o~)~/4. 
Here @is ratio of the length of a sufficiently large part of the axial line of the weft to 
the projection on the median plane. Simple geometrical considerations give a formula for e: 
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@ = arcsin[, m = • �9 = [@ + F I  --[= + m~, t =[~ + F(1 _[2)~ + ~2, 
0 = (~ + • + • 

It should be noted that the wefts in serge and semiserge weaving have a certain inclination 
in the plane of the strip. The ratio of the inclination of the weft in a step between ad- 
jacent warps to the size of the step is equal to m. 

We have the dimensionless thickness and the porosity as 

h=8o + 2 ~ ,  vp= 1--EJh.  (i) 

Measurements show that the initial parameters often deviate appreciably from the 
standard ones, so they should be determined by direct measurement. However, this is not 
always possible. If the values of do, no, and n u are unknown, one has to use their standard 
values. The standard value d~ is usually larger than the real d u because of the stretching 
in making the strip. Allowance can be made for this in the following approximate fashion. 
We assume that an initially straight wire in the weft of diameter d~ is stretched by a fac- 
tor 0 during manufacture. Then as the volume is constant, the diameter of the wire d u will 
take the value du~ = d~. The quantity e is dependent on du via ~, so the solution to the 
equation can be obtained only numerically, for example by successive approximation, with d~ 
taken as the initial value. Calculations show that the value of du can be determined quite 
accurately after two or three iterations. 

We introduce a coordinate system. We bring the xOy plane into coincidence with the 
median plane of the strip. The x axis is directed along the warp, while the z axis is 
vertically upwards. From the strip we dissect out a rectangle with sides Lo and Lu, which 
are directed along the warp and weft, respectively. We denote by Su(S o) the area of cross 
section of one wire in the weft (warp) in a plane parallel to xOy. Then the ratio of the 
free area to the area of the rectangle (working section) is given by ~=l--~,~=n~Su/L~-[-noSo/Lo. 

We denote by I u the pitch between the warps. After passing through a certain number of 
warps, the weft of wire returns to the initial position. We denote the length of this path 
by T u. It is clear that Tu//u is an integer dependent on the type of weaving. That is, for 
linen weaving it is 2, while for semiserge it is 3, and for serge it is 4, or in short it 
is 2 (1--[-• 

We give the name ~ type to wefts running parallel to the median plane between adjacent 
warps. The number of these per unit length is denoted by nu, while the area of the z sec- 
tion in the step between adjacent warps is Su. The wefts intersecting the median plane are 

said to be of n type, and we introduce the corresponding symbols nu, Su. We note that the 
following equations apply: 

~ = • + • ~ = n~/(1 + • (2) 

Without loss of generality, Lu can be taken as equal to T u. Then we express Tu in 
terms of lu and • to get for Su/L u 

Su/L~ = (g~ + 2 Su)/{2 (1 + • l~}. (3) 

We note that for linen weaving Su must be taken as zero, while Su for semiserge should be 
considered only on one side of the strip, with Su = 0 on the other. 

The warps in a strip of dense type are rectilinear and lie in the median plane, so the 
expression for So/Lo takes a particularly simple form. 

We denote by Pu and Po the perimeters of the sections for wires in the weft and warp 
in the rectangle. If we substitute Pu and Po instead of S u and S o into the formula for ~, 
then the resulting quantity p will be equal to the ratio of the perimeters of the section of 
all the wires to the area of the rectangle. A difference ~rom ~is thatp isdimensional. In- 
stead of p we use the dimensionless quantity ~ = pd~. Then 

= ~uPu/L~ + %Po/Lo. (4) 

Then (3) with_S u replaced by Pu and Su by Pu enables one to calculate Pu/L u. Then a 
remark made about S u applies also to ~u" 
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Fig. I. Characteristic z coor- 
dinates for the 8h(Z) dependence. 

Clearly, the ratio 4~/~ is equal to the dimensionless hydraulic diameter of a certain 
z section. We denote this by 5h. 

We now note certain features of ~, 7, and 6h as functions of z. Figure 1 gives the 
coordinates used below for sections in the strip. It is readily seen that ~u, Su, S o are 
continuous in z. Therefore, g and ~ are also continuous. The situation is different with 
7. In fact, the values of Pu and Po are independent of z, which means thatlim ~ for z + 

z c+0 is not equal to lim~ for z+z c -- 0, and therefore ~ has a discontinuity at Zc, and 
consequently so does 6 h. Also, ~ is equal to one at the point z a for any type of weaving. 
The value of ~, on the other hand, at this point is zero for the linen-weave strip but dif- 
ferent from zero for serge. Consequently, 8h increases without limit for z + z a for linen- 
type strip and has a finite limit for serge. 

We now calculate Su, Pu- Figure 1 shows that the surface of the weft of n type con- 
sists of parts of a torus and cylinder; the z sections of the surface are ellipses for 
~ ,  while for ~<~ they are curves of fourth order (sections of a torus): 

x 2 =  1 - - ( g ~ + z  ~ - z b )  ~. (5) 

Note t h a t  we have used  0 .5d~  as the  s c a l e  i n  ( 5 ) .  S e c t i o n s  o f  a t o r u s  a r e  v e r y  c l o s e  in  
f e a t u r e s  to  C a s s i n i  o v a l s .  However,  i t  can  be shown t h a t  f o r  a g i v e n  t o r u s  the  shapes  of  
o n l y  two o f  the  z s e c t i o n s  a r e  i d e n t i c a l  w i t h  C a s s i n i  o v a l s .  I n  the  g e n e r a l  c a s e ,  n e i t h e r  

% % 

t he  a r e a  nor  the  p e r i m e t e r  of  the  c u r v e  o f  (5) ( q u a n t i t i e s  e q u a l  to  Su, Pu a p a r t  from s c a l e s )  

i s  e x p r e s s e d  by known f u n c t i o n s .  One can d e t e r m i n e  Su, Pu o n l y  by n u m e r i c a l  i n t e g r a t i o n .  

We t r a n s f o r m  (1) and (4) u s i n g  (2) and ( 3 ) :  

- - "  0 g = Vo {~  (0,5 S~ + S~) + So/(d~Lo)}, (6) 

= ~o {?~(o,s >~ + P~) + & / G } .  (7) 
Here S' is referred to (d~) 2 and P' to d~. The determination of Su, >u, So, Po clearly does 
not cause difficulty, since one uses the corresponding characteristics of cylinder sections. 

One derives S u and Pu from numerical integration, and from (6) and (7) one can then calculate 
and 7, and thus can determine 5 h for a certain z section. 

Figure 2 shows the results from such calculations for a series of serge strips. 
Clearly, the 6h(Z) dependence for serge and linen strips is symmetrical with respect to the 
median plane. Correspondingly, Fig. 2 shows that 6h(Z) for serge strips has three charac- 
teristic features: near the points Zb, --z b, and at z m. The ~h(Z) dependence for linen 
weave is not shown in Fig. 2, but over the part (--Zc; Zc) it hardly differs from the rela- 
tionship for the corresponding serge: a small difference is introduced by the inclination 
of the weft in the latter. Over the part (Zc; Za), (--Za; --Zc), 8h tends monotonically to 
infinity. Therefore, the dh(Z) curve for linen-type strips has the form of two funnels with 
one singular point symmetrical with respect to the median plane. The 6h(Z) dependence for 
semiserge, neglecting the slight effect of the weft inclination, coincides with that for 
serge on one side of the median plane and with that f~r linen weave on the other. These are 
the general features of the structure in the equivalent hydraulic channel for dense weaves 
of these three types. 
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Fig. 2. Behavior of hydraulic diameter and 
pore diameter for certain dense strips with 
serge weaving: solid lines: calculated 
~h(Z); points from top downwards: ~h, ac, 
6h, +, ~h, -, ~h, m; dot-dash line: approxi- 
mate coarse of 6p(Z) for $685 strip; i) 
$200; 2) $450; 3) $685; 4) S120; 5) $80. 

We now give formulas for calculating 6h(Zm), which is used below. The trace of the 
% 

n-type weft in the median plane is an ellipse, whose major and minor semiaxes are equal in 
the absence of inclination (Fig. i): bo = 0.5~u/E, a = 0.5~ u. The inclination of the wefts 

at angle B leads to a certain increase in the major semiaxis: b~ =b0~]+~2/(I--~2). 

We determine the perimeter and area of the ellipse Pu, Su' and then for the quantity 6h, m 

~,~ = 4 (i - ~o {~. ~;, + ~o})/(~o{~.P~+ 2}). 

The pore diameter in a porous material is defined by the following formula [3] in tra- 
ditional symbols : 

~ = 4 a cos O/(APd~ (8)  

The various z coordinates in the interface between the phases in the strip correspond 
to different values of the pressure difference and on account of (8) to different values of 
the pore diameter. Therefore, we have a function 6p(Z) analogous to ~h(Z). By pore diameter 
we mean the minimum in ~p with respect to z. 

We have seen above that the ~p determined from (8) for a fibrous material is virtually 
equal to the hydraulic diameter ~h- In application to undeformed strips, this enables one 
to identify the least value of the hydraulic diameter with the pore diameter. In particu- 
lar, for linen-weave strips we get as follows on the basis of ~h(Z): 

8p : 6h(Zrn) = ~h,m, • ---- 0. (9) 

At  f i r s t  s i g h t ,  one  d e t e r m i n e s  t h e  p o r e  d i a m e t e r  f o r  s e r g e  weave  by  s e e k i n g  t h e  m i n i -  
mum i n  6h w i t h  r e s p e c t  to  z .  However ,  t h i s  i s  n o t  s o ,  a nd  t h e  r e a s o n  l i e s  i n  t h e  s p e c i f i c  
fo rm o f  t h e  z s e c t i o n s  o f  a s e r g e  s t r i p  n e a r  t h e  p o i n t  z b .  I t  i s  r e a d i l y  s e e n  i n  f a c t  t h a t  
t h e  w o r k i n g  s e c t i o n  a t  z ~ z b i s  a c u r v i l i n e a r  q u a d r i l a t e r a l .  The s h a p e  n e a r  t h e  v e r t i c e s  
r e s e m b l e s  s h a r p - e n d e d  w h i s k e r s  w i t h  a l a r g e  p e r i m e t e r  and  r e l a t i v e l y  s m a l l  a r e a .  T h i s  means  
t h a t  t h e  p h a s e  i n t e r f a c e  i n  t h e  r e g i o n  o f  p o i n t  z b b e a r s  n o t  on  t h e  e n t i r e  p e r i m e t e r  b u t  
o n l y  on  a c e r t a i n  a c t i v e  p a r t  n o t  e x t e n d i n g  i n t o  t h e  r e g i o n s  a d j o i n i n g  t h e  v e r t i c e s ,  a n d  a s  
i t  w e r e  i t  s m o o t h s  t h e  s h a r p - e n d e d  fo r m .  I t  i s  c l e a r l y  i m p o s s i b l e  t o  d e t e r m i n e  t h e  a c t u a l  
a r e a  and  p e r i m e t e r  o f  t h e  p h a s e  i n t e r f a c e n e a r  z b a nd  t h u s  t h e  p o r e  d i a m e t e r .  

F i g u r e  2 shows t h e  q u a l i t a t i v e  d e p e n d e n c e  o f  ~p on  z f o r  $685 s t r i p .  

However ,  t h e  f u n c t i o n  Sp(Z) c a n  be  i d e n t i f i e d  w i t h  ~h(Z)  i n  t h e  p a r t  (Zm; Z c ) .  The 
minimum in ~h in this part evidently occurs for z = Zm:~p, m = ~h, m. The minimum value of 
6p in the part (Zc; Za), namely ~p, ac, is not known, as noted. We denote the limit to ~h 
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Fig. 3. Experimental data 
on pore diameter and current 
porosity for a series of 
metals: i) P80, points 
calculated from the empiri- 
cal correlation (29) of [3]: 
2) S80 [13]; 3) S120 [14]; 
4) $200 [14]; 5) $450 [14]; 
6) $685 [14]. 

TABLE i. Comparison of Calculated Pore Diameters with Mea- 
sured Ones 

Strip 

325/2300 

250/1400 
200/1400 

165/1400 

165/800 
850/155 
720/1 
720/I50 
670/120 

d o , ~lTt 

38 

55 
7O 

70  

70 
100 

110 
120 

d u , ~iTl 

25 

Calculated dp, ffm I Observed 
- -  " dp, 

8,5 

12,9 
13,4 

40 
40 

40 

50 
30 

35 
32 

18,5 

18,4 
13,8 

8,6 
2 3 , 7  

I1,9 

13,7 
17,3 

26,1 

24,1 
24,6 

2 2 , 2  
36,8 

16,6 

18,1 
25,3 

34,8 

32,3 
36,6 

33,6 
51,5 

10,0 
10,0--13,0 
12,6--13,9 

13,3 
14,5 
13,5 
13,4 
15,0 

15,0--!7,0 
16,8 
21,1 
21,4 
18,6 

21,0--22,0 
22,7 
23,0 
31,2 
32,9 
31,0 

Refer- 
ences 

i 
5] 
8] 
9] 
1o] 

[12] 

[81 
!10t 
191 
[121 
[11] 
[8] 
[U! 

121 
lO] 

[8] 

for z + Zc + 0 as 6h, +. Then clearly 6p, ac lies between ~h, + and ~h, ac, the minimum in 
6h in this part. The approximation of 6p, x to ~p, ac is recommended as being determined 
as the arithmetic mean between 6h, + and 5h, ac. Then we naturally have the following 
approximate formula for the pore diameter in a serge strip: 

6v = rain (6v,~; 6;,~). (I0) 

Table 1 compared (9) and (i0) with fairly extensive experimental evidence. By specify- 
ing permissible standard deviations (about • for the initial parameters, we determine 
the minimum and maximum possible values of 6p, which are also given in the table. Table 1 
indicates that (9) and (i0) can be used to calculate pore diameters in undeformed strips. 

Before we consider the dependence of 5p on the deformation of a packet of strips, or in 
other words on the porosity of the resulting metal, it is desirable to elucidate the number 
of quantities that govern the value of 5p. The answer is a trivial consequence of the 
theorem: dp is determined by the four initial strip parameters, so dp/d u will be determined 
by three parameters, for example nodu, nudu, do/du. If we neglect the difference between 

1357 



TABLE 2. Calculated Characteristics of Certain Dense Strips 

Strip • GOST or TU 

PS0 0 GOST 3187--76 
$80 1 GOST 3187--76 
S120] 1 GOST3187_76 
$200[ 1 GOST 3187--76 
$450 1 TU 14--4--697--76 
$685 1 TU 14--4--697--76 

 "P~176 /Po- 
ro,.y 0o 

6u 

180 - I0,679 036310907 
2oo 1,43 11,01 [1,01 10,451 2,7510,43610,97~ 
160 1,18 10,94510,94510,429 2,73 10,486/0,968 
140 0,63210,68910,63210,843 2,41 /0,664/0,942 
55 0,87510,94.5 0,87510,407 2,69/0,639/0,946 

2,96 32 0,99911,04 0,99910,419 / 0,646~ 0,946 

60 

,56 
,75 
,56 
,4& 
,64 
,99 

d u and dR, which is unimportant here, we get that 6p is a function of three arguments: ~o, 
~u, 6o" We use z and ~ together with ~o and ~u" This is clearly permissible. 

Then it is clear that the pore diameter in a consolidated packet of strips 6~ is de- 
pendent not only on x, ~, and 6 o but also on the degree of consolidation or the current 
porosity v~: 

A = f ( •  6o, ). (n) 
�9 0 0 

We denote the pore diameter and porosity in an undeformed strip by 6 D and Vp correspond- 
. O o- ingly. For a given we can express ~ and 6 o mn terms of 6p and Vp, so we can transform 

o v~). (12)  (n) : = f ( •  

We introduce the symbols ~ v{ = 

Figure 3 gives experimental data for a series of metals in 6~, v~ coordinates. Table 
2 gives the characteristics of the initial strips calculated from the above formulas. From 
Fig. 3 we can rewrite (12) in a completely unexpected form: 

6p =/(V ~-, Vp. (13) 

Finally, for (13) one can recommend a more accurate approximation: 

6p : v; 1.2~. (14) 

Formulas (i), (9), (i0), and (14) constitute the main content of this study. They 
enable one to calculate pore diameters for undeformed strips and for porous metals based on 
them. 

We can now determine how far the d~ and v~ characterize the geometry of the pore space 
in a given metal, or in other words whether one can have metals made of different strips of 
identical pore diameters with identical porosity. The answer is given from (14): for this 
purpose it is sufficient for the ratio d~/(v~) 1"25 to be the same in the two cases. Calcu- 
lations show for example that in P80 and S120 strips the ratios differ by less than 1%. 
Therefore, porous metals made of P80 and S120 have identical pore diameters and identical 
porosity. On the other hand, the pore structures in these metals are completely different, 
because of the differences in geometrical structure in the initial strips: linen weave and 

serge. 
A A 

We thus draw the important conclusion that dp and vp are inadequate to characterize 
these metals, and the implications are deeper than coincmdence between the pore diameters. 

The results show that any geometrical characteristic of such a metal is a function of 
A 

five parameters such as the following: d~, z, ~, ~o, vp This number is too large, and this 
raises the far from trivial question of reducing it. An example of the reduction is the use 
of the two quantities d~, v~. In accordance with (14), d~ is determined by the product of 

0 ~ 0 0 1 . 2 5  d u by the corresponding power of Vp and the ratio 6p/(Vp) . Values from the latter are 
given in Table 2, and it is evident that the quantity is almost constant. Therefore, d~ 
is virtually a function of d~ and v~, and use of v~, d~ is almost equivalent to using 
A o Vp, d u. However, it is completely clear that the porosity and the linear scale cannot com- 

pletely characterize the structure of the pore space. 

These results illustrate why there are no physical regularities in the hydraulic re- 
sistance laws derived using d~, v~ for porous strip metals [4]. 
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